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The coefficient of  heat distribution in the zone of contact of the end of a cylindrical rod with the face of a 

rotary disk is determined. 

Choice of the Calculation Model. We will consider a tribosystem consisting of a round rod (pin) one end 

of which rubs against the face of a rapidly rotating steel disk (Fig. 1). In the zone of contact the work against 
friction forces generates thermal energy and, as a result, a high temperature can develop. Without loss of generality, 

we assume that: 
1) axial heat conduction can be neglected, since the disk thickness is small as compared to the radius. 

Therefore, the temperature of the disk will depend only on the radial and angular coordinates; 
2) the angular speed of the disk is considerably greater than the ratio of the thermal diffusivity of the disk 

to its radius (ojR2/(2k) > 100); 

3) the intensity of the heat flux is constant in the zone of contact; 
4) convective heat transfer proceeds from the face and side surfaces of the disk to the surrounding medium. 

Heat transfer coefficients are constant and Bi __ 1; 
5) in the zone of contact the rod temperature is equal to the mean temperature of the disk surface. 
With the assumptions made, we will consider the two-dimensional quasistationary heat conduction problem 

of a thin disk with a constant-power heat source moving quickly over its face. 
Quasistationary Heat Conduction Problem for the Disk. The geometry of the problem and the boundary 

conditions are shown in Fig. 2. Assume that the polar coordinate system (r, 0) is rigidly connected with the heat 

source and the disk is rotating with a constant angular speed oJ relative to this coordinate system. Taking into 
consideration assumptions 1) - 3), we built a solution of the heat conduction equation [1 ] 

satisfying the boundary condition 

Here 

O2T____~ * 1 OT* * 
2 + aT* = Pe OT , 

Op p Op O0 
(1) 

f 

aT* J 1 ,  101 -<00, p =  1, (2) 

-~P - I - B i T * ,  101 > 0 o ,  p =  1. 

, i 

r Pe - ~ hR Bi h R r c5 Bi T* KT (3) 
k ' B i -  K ' - K ' P = R '  A = ~ ,  t T -  A ' - q R "  

Performing a finite Fourier transformation [2 ] in Eqs. (1) and (2) 
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Fig. 1. Geometry of the problem. 

Fig. 2. Diagram of rotating cylindrical rod (geometry and thermal boundary 
conditions). 

e I ,  n = O ,  
T * ( p , n ) = ~  f T*(p,O) e x p ( - i n O ) d O ,  e =  2 n > l  

we arrive at 

02T * 1 0 T *  - - +  
2 

Op p Op 
Jl 2 T* 0 22 = , = a + in Pe ,  

2t~I 

lh" 

(4) 

�9 ] o 
O'T ~ .  e f [l + Bi T* (1, O) l exp ( -  inO) dO . 

Op p=l m - -  Bi + -~_0o 
(5) 

A solution of Eq. (4) restricted at the disk center and satisfying condition (5) has the form 

i o (ap) ~ o 
"T*(p,n)  = B i I  0(2) +211(,~) 2at f [1 + B i T * ( 1 , 0 ) ] e x p ( - i n 0 ) d 0 .  

-00 

Next, we pass to the inverse transform of the sought solution of problem (1), (2) with the help of the 
formula 

T" (p, 0) = Re ~ T * (p, n) exp (inO), 
n=0 

which yields 

o 
f [1 + Bi T* (1, 0')l exp [ -  in (0' - 0) 1 dO' 

e ~ -0~ (6) 
T* (p, 0) = ~ R e  ~ h 0) 

,~=o Bi t~  (a) + ,~ _ _  
t o (;tp) to (,~p) 

At Bi _< 1 the term BiT* under the integral in solution (6) can be neglected [3 ]. Thus, a surface temperature 
(p -- l) of the disk is equal to 
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T* (I,  0) = ~ Re 
n=O 

0 
f exp [ -  in (0' - 0) 1 dO' 

-00 

Bi + 2 I1 (2) 
I0 (V) 

At n -, 0 it follows from equality (7) that 

0 o r" (I, o) - 
~Mo 

- _ _ ,  Mo = Bi + q-~ I1 ( vr~ ) 

Io (v~)  

But forn_> 1, 

r* (l,O) = I ~-Re ~ (Bi+2)- 
n=l 

0 
I f exp [ -  in (0' - O) l dO', 

-00 

where it is taken into consideration that I1(2)/Io(/l) ~ 1 for large nPe values [4 ]. 
Since 

[ o ] 
Re (Bi + 2)-1 f exp [ -  in (0' - O) ] dO' = 

-00 

[ B i + D c o s  cos [n(0  - 0 ) ] - D s i n  sin [n(0  - 0 )  1 

then relation (6) at n > I can be represented in the form 

, n_>l, 

1 ~ Ln , 
T* (1, O) = ~- nM n 

n = l  

(7) 

(s) 

(9) 

formula 

D =  ( a2+  n2pe2) l /4 ,  ~ = arctan (nPe_.) , 

Ln= [Bi+Dcos (~)] Sn+Dsin  (1) Cn, M n = B i 2 + D 2 + 2 B i D c o s  (~) ,  

F 

S n=sin  [n (00 - 0) ] + sin [ n ( 0 0 + 0 ) ] ,  C n=cos [n(O o - 0 ) ] - c o s  [n(0  + 0 )  l .  

With allowance for relations (3), (8), and (9), the temperature distribution in the disk is given by the 

T (R, O) qR T* , = -2- (1, O) (1o) 

T* (I, 0) = ~ 
n=l 

Based on the solution of (10), (11), we find the mean temperature in the heating region 

(11) 
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Fig. 3. Dis t r ibut ion of  disk surface  t empera tu re  for  00 = 0.02 rad ,  Bi = 1, Bi' 

ffi 0.1,  A ffi 0.1 at  d i f ferent  Pe  numbers .  

l 8 
T. - 20 ~ f T (R, O) do = qR T~ 

_00 K ' 
(12) 

r2=  ~ 

n2Mn 

(13) 

Sta t i ona ry  H e a t  Conduc t ion  P rob l e m  fo r  the Pin. We will cons t ruc t  a solut ion of  the  o n e - d i m e n s i o n a l  hea t  

conduc t ion  equat ion  [1 ] 

O2T1 2h I 

Ox 2 KIR  1 
- -  r I = O ,  ( 1 4 )  

sa t i s fy ing  the  b o u n d a r y  condi t ions  

OTI I (15) 
KI ~ x=0 = -- ql , 

T 1 = 0 ,  x = l .  (16) 

A solut ion of  the  b o u n d a r y - v a l u e  heat  condu t ion  problem (14)- (16)  is as follows 

ql l sh [v (l - x ) ]  
T 1 (x) - KI ~ ch (F') ' 

v =  ~ / 2 B i l - / R  1, Bi I = h l R l / K  1, ~o = v l .  

Hence  the t empera tu re  at  the end  x = 0 of the rod is: 

- ql---~-/th (~o) .  ( 1 7 )  
T! - Kl~o 

Hea t  Dis t r ibut ion Coefficient .  T h e  a m o u n t  of heat  t r ans fe r red  separa te ly  to the rod  a n d  to the disk is 

de te rmined ,  based  on hypothes i s  5),  by  equat ing  the  mean  t empera tu res  of the disk and  the  rod  in the zone of 

contact ,  i.e., T a = T I. T h e n  f rom relat ions (12) and  (17) it follows tha t  
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Fig. 4. Maximum surface temperature  of disk as a function of the Peclet (Bi = 

1, Bi' = 0.1, A = 0.1) a) and Biot numbers  (Pe = 200, Bi' = 0.1, A = 0.1) b) at 

different  angular  widths of the heat source. 

qR ql I th (~o) (18) 
T r : - K ,  , 

where the dimensionless averaged temperature  of the disk surface T:a is given by formula (13). 

The  coefficient of heat  distribution between the pin and the disk is determined as 

)' = Q 0 - < r / <  1 ,  (19) 
'7 = i +~,  Q + Q ~ '  

Y = Q / Q I ,  Q = qA, Ql = qlAl .  Note that at r/--- 0 the entire heat  genera ted  in the zone of contact is t ransfer red  to 

the pin, while in the case T/-- 1, to the disk. From equality (18) we obtain 

AKI th (~o) (20) 

A1K1R ~oT; 

Since R l ~- RO0, the area of the heating zone on the disk surface is equal to A ~- 4~RO o, and,  as a result  

A _ 4~RO o _ 4 A 

A 1 gR~ g 0 0 ' 

while from Eq. (20) it follows that 

y _ 0,9KA th (~o) 

K 1 ~/Bi t 7": 

Results  and Discussion. Figure 3 shows the dimensionless  surface tempera ture  of the disk T**(0) --- 

T*(1, 0) /00  as a function of the angular  coordinate for the heat  source with an extension of 0.02 rad. for several 

Pe numbers  (3). It is seen that the local temperature  rise near  the source decreases with increasing Pr. T h e  surface 

temperature  in front of the source is constant,  while behind the heating region it, af ter  the rise, gradual ly decreases  

approaching its value in front of the source. Its maximum is reached at 0 = 00. 

It should be noted that the number  of terms in series (11) required to attain a prescribed accuracy highly 

depends on the an angular  width of the zone of contact. Narrow heating regions need a larger number  of terms. 

For the indicated value 00 = 0.02 rad, from 102 to 103 terms are required. 

The  maximum dimensionless temperature  of the disk surface Tma x = T**(00) versus Pe numbers  for different  

widths of the contact zone is shown in Fig. 4a. It is seen that at low speeds of rotation, when the heat ing time of 

the disk increases, thermal  conductivity in radial direction will be high and the temperature  in the zone of contact  

increases. 
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Fig. 5. Heat  distribution coefficient versus angular  width of the zone of contact 

s 

at different Peclet a) (Bi = 1, Bi = 0.1, A = 0.1, K / K I  = 1, Bil = 1, l /R l  = 

6) and Biot b) (Pe = I00, Bi' = 0.1, A = 0.1, K / K I  = 1, Bil = 1, l / R l  = 6) 

numbers.  
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Fig. 6. Heat  d i s t r i bu t i on  coeff ic ient as a funct ion of  the d imension less d isk  
I 

hal f - th ickness fo r  Bi = 1, 00 = 0.01, Bi  = 0.1, A = 0.1, K/K 1 = l ,  B i l  = l ,  

l /R l  = 6 at different  Peclet numbers. 

The  influence of convective cooling of the disk face (the Biot number)  on the maximum tempera ture  

~m*ax is shown in Fig. 4b. 

A coefficient of thermal  energy distribution ~/ (19) versus the widths of the zone of contact  for  different  Pe 

numbers  is plotted in Fig. 5a. At a fixed width of the contact zone, an increase in the speed of disk rotat ion increases 

the amount  of friction heat t ransfer red  to the disk. 

The  corresponding results for several Bi numbers are depected in Fig. 5b. With enhancement  of convective 

cooling for a fixed source width of 200, the amount  of heat consumed for heating of the working surface of the disk 

increases, though its temperature,  as seen in Fig. 4b, decreases. 

Figure 6 shows ~/as a function of the dimensionless disk half-width A. 

Conclusions. A mathematical  model is suggested for calculating the heat distribution coefficient over a 

sliding zone of contact of a rapidly rotating disk and a fixed round rod. Such a friction pair often serves as a working 

element of experimental  friction machines.  Quasistationary and  stat ionary heat conduction problems are solved for 

the disk and the rod, respectively. From the condition of equality of the mean temperatures  in the zone of contact 

an analytical expression for the heat  distribution coefficient is obtained. The  influence of the speed of disk rotation, 

convective cooling of its surface, and geometric dimensions on the heat distribution between the contacting bodies 

is investigated. 

N O T A T I O N  

T, temperature;  q, ql, heat fluxes t ransferred to disk and rod, respectively; k, thermal  diffusivity; K, 

thermal conductivity; h, h', coefficients of heat release from disk face and side surface, respectively; hi ,  heat  t ransfer  
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coefficient from side surface of rod; R, disk radius; Rl, radius of rod cross-section; 6, half-thickness of disk; l, rod 
length; A, actual area of contact zone; as, angular speed of disk rotation; r, 0, polar coordinates; 0 0, angular 
half-width of heating zone on disk surface; I0(-), Ii ("), modified Bessel functions of the first kind. 
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